随着Covid-19大流行的爆发,急迫有效地识别可能与已经感染Covid-19感染的人密切接触的人。该识别个人的过程,也称为“联系跟踪”,对该病毒传播的遏制和控制具有重大影响。但是,手动跟踪已被证明是无效的呼叫自动接触跟踪方法。因此,本研究提出了一种自动化机器学习系统,用于使用通过手持设备传输的传感器数据来识别可能已经与Covid-19感染的其他人接触的个人。本文介绍了到达最佳解决方案模型的不同方法,其有效地预测使用梯度升压算法和时间序列特征提取的人是否已经密切接近受感染的个体。
translated by 谷歌翻译
Despite the success of large language models (LLMs) in various natural language processing (NLP) tasks, the stored knowledge in these models may inevitably be incomplete, out-of-date, or incorrect. This motivates the need to utilize external knowledge to assist LLMs. Unfortunately, current methods for incorporating external knowledge often require additional training or fine-tuning, which can be costly and may not be feasible for LLMs. To address this issue, we propose a novel post-processing approach, rethinking with retrieval (RR), which retrieves relevant external knowledge based on the decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting. This lightweight approach does not require additional training or fine-tuning and is not limited by the input length of LLMs. We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our results show that RR can produce more faithful explanations and improve the performance of LLMs.
translated by 谷歌翻译
We introduce a language generation task grounded in a popular video game environment. KNUDGE (KNowledge Constrained User-NPC Dialogue GEneration) involves generating dialogue trees conditioned on an ontology captured in natural language passages providing quest and entity specifications. KNUDGE is constructed from side quest dialogues drawn directly from game data of Obsidian Entertainment's The Outer Worlds, leading to real-world complexities in generation: (1) dialogues are branching trees as opposed to linear chains of utterances; (2) utterances must remain faithful to the game lore--character personas, backstories, and entity relationships; and (3) a dialogue must accurately reveal new quest-related details to the human player. We report results for supervised and in-context learning techniques, finding there is significant room for future work on creating realistic game-quality dialogues.
translated by 谷歌翻译
Heteroscedastic regression models a Gaussian variable's mean and variance as a function of covariates. Parametric methods that employ neural networks for these parameter maps can capture complex relationships in the data. Yet, optimizing network parameters via log likelihood gradients can yield suboptimal mean and uncalibrated variance estimates. Current solutions side-step this optimization problem with surrogate objectives or Bayesian treatments. Instead, we make two simple modifications to optimization. Notably, their combination produces a heteroscedastic model with mean estimates that are provably as accurate as those from its homoscedastic counterpart (i.e.~fitting the mean under squared error loss). For a wide variety of network and task complexities, we find that mean estimates from existing heteroscedastic solutions can be significantly less accurate than those from an equivalently expressive mean-only model. Our approach provably retains the accuracy of an equally flexible mean-only model while also offering best-in-class variance calibration. Lastly, we show how to leverage our method to recover the underlying heteroscedastic noise variance.
translated by 谷歌翻译
The opaqueness of the multi-hop fact verification model imposes imperative requirements for explainability. One feasible way is to extract rationales, a subset of inputs, where the performance of prediction drops dramatically when being removed. Though being explainable, most rationale extraction methods for multi-hop fact verification explore the semantic information within each piece of evidence individually, while ignoring the topological information interaction among different pieces of evidence. Intuitively, a faithful rationale bears complementary information being able to extract other rationales through the multi-hop reasoning process. To tackle such disadvantages, we cast explainable multi-hop fact verification as subgraph extraction, which can be solved based on graph convolutional network (GCN) with salience-aware graph learning. In specific, GCN is utilized to incorporate the topological interaction information among multiple pieces of evidence for learning evidence representation. Meanwhile, to alleviate the influence of noisy evidence, the salience-aware graph perturbation is induced into the message passing of GCN. Moreover, the multi-task model with three diagnostic properties of rationale is elaborately designed to improve the quality of an explanation without any explicit annotations. Experimental results on the FEVEROUS benchmark show significant gains over previous state-of-the-art methods for both rationale extraction and fact verification.
translated by 谷歌翻译
Image segmentation is a largely researched field where neural networks find vast applications in many facets of technology. Some of the most popular approaches to train segmentation networks employ loss functions optimizing pixel-overlap, an objective that is insufficient for many segmentation tasks. In recent years, their limitations fueled a growing interest in topology-aware methods, which aim to recover the correct topology of the segmented structures. However, so far, none of the existing approaches achieve a spatially correct matching between the topological features of ground truth and prediction. In this work, we propose the first topologically and feature-wise accurate metric and loss function for supervised image segmentation, which we term Betti matching. We show how induced matchings guarantee the spatially correct matching between barcodes in a segmentation setting. Furthermore, we propose an efficient algorithm to compute the Betti matching of images. We show that the Betti matching error is an interpretable metric to evaluate the topological correctness of segmentations, which is more sensitive than the well-established Betti number error. Moreover, the differentiability of the Betti matching loss enables its use as a loss function. It improves the topological performance of segmentation networks across six diverse datasets while preserving the volumetric performance. Our code is available in https://github.com/nstucki/Betti-matching.
translated by 谷歌翻译
Neural language models (LMs) have achieved impressive results on various language-based reasoning tasks by utilizing latent knowledge encoded in their own pretrained parameters. To make this reasoning process more explicit, recent works retrieve a rationalizing LM's internal knowledge by training or prompting it to generate free-text rationales, which can be used to guide task predictions made by either the same LM or a separate reasoning LM. However, rationalizing LMs require expensive rationale annotation and/or computation, without any assurance that their generated rationales improve LM task performance or faithfully reflect LM decision-making. In this paper, we propose PINTO, an LM pipeline that rationalizes via prompt-based learning, and learns to faithfully reason over rationales via counterfactual regularization. First, PINTO maps out a suitable reasoning process for the task input by prompting a frozen rationalizing LM to generate a free-text rationale. Second, PINTO's reasoning LM is fine-tuned to solve the task using the generated rationale as context, while regularized to output less confident predictions when the rationale is perturbed. Across four datasets, we show that PINTO significantly improves the generalization ability of the reasoning LM, yielding higher performance on both in-distribution and out-of-distribution test sets. Also, we find that PINTO's rationales are more faithful to its task predictions than those generated by competitive baselines.
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
在现实世界中的对话系统中,生成的响应必须满足几个互锁的限制:内容丰富,真实且易于控制。语言生成中的两个主要范式 - 神经语言建模和基于规则的一代 - 都难以满足这些约束。即使是最好的神经模型,也容易出现信息的幻觉和省略,而现有的基于规则的形式的形式使得很难编写既灵活又流利的语法。我们描述了对话响应产生的混合体系结构,结合了两种方法的优势。该体系结构有两个组件。首先,使用新的正式框架定义的基于规则的内容选择模型,称为数据流转导,该模型使用声明性规则将对话代理的计算(表示为数据流图)转换为代表上下文可接受响应空间的无上下文语法。其次,使用这些语法来限制神经语言模型的输出的受约束解码过程,该过程选择流利的话语。最终的系统在人类对流利,相关性和真实性的评估中的表现都优于基于规则的方法和学识渊博的方法。
translated by 谷歌翻译
在抽象性摘要的背景下,已广泛讨论了不忠摘要的问题。尽管提取性摘要不太容易出现抽象性摘要的普遍不忠问题,但这是否意味着提取性等于忠实?原来答案是否定的。在这项工作中,我们定义了一种类型学,具有五种类型的广泛的不忠问题(包括和超越未登录),这些问题可能出现在提取性摘要中,包括不正确的核心,不完整的核心,不正确的话语,不完整的话语,不完整的话语以及其他误导性信息。我们要求人类在1500个由15种不同的提取系统产生的英语摘要中标记这些问题。我们发现,其中33%的摘要至少有五个问题中的一个。为了自动检测这些问题,我们发现5个现有的忠诚评估指标与人类判断力的相关性很差。为了解决这个问题,我们提出了一种新的度量标准,该指标旨在检测不忠的提取性摘要,并显示出最佳性能。我们希望我们的工作能够提高对提取性总结中不忠问题的认识,并帮助将来的工作评估和解决这些问题。我们的数据和代码可在https://github.com/zhangshiyue/extractive_is_not_faithful上公开获取
translated by 谷歌翻译